2017 CAPTURE TECHNOLOGY MEETING

LAB-SCALE DEVELOPMENT OF A HYBRID CAPTURE SYSTEM WITH ADVANCED MEMBRANE, SOLVENT SYSTEM AND PROCESS INTEGRATION

DE-FE0026464

AUGUST 22, 2017

Membrane Integration

Membrane/Solvent Integrated Process

- Advantages
 - Tail-end technology which is easily used in retrofits
 - No steam extraction is required
 - Heat pump is seamlessly integrated into the cooling and heating of absorption/stripping process
 - Operating pressure of the stripper will be very flexible depending on the low quality heat
- Disadvantage
 - Capital cost could be intensive

CCS Team

CARBON CAPTURE SCIENTIFIC LLC Dr. Scott Chen and Dr. John Pan

- Experienced Chemical Engineer
- Strong Background in Separation Processes and Thermodynamics
- Founder of Carbon Capture Scientific, LLC

PSU Team

Prof. Harry Allcock and Dr. Zhongjing Li

d lon LIS Team

Prof. Hunaid Nulwala and Dr. Dave Luebke

- Experienced Chemist with Experience in Industry, Government, and Academia
- 40+ Publications and 16+ Patents and Applications in Material Development

- Leading Investigator of Phosphazene Polymers (>630 Articles in the Area)
- Renowned Chemist with Experience in Industry, Government and Academia

Project Outline

- Task 1: Project Management
- Task 2: Computer Simulation of Hybrid Process
- Task 3: Generation 0 ICE Membrane Development
- Task 4: Modification, Installation, and Testing of Absorption Column
- Task 5: Generation 1 ICE Membrane Development
- Task 6: Modification, Installation, and Testing of Air Stripper
- Task 7: Membrane Scale-up and Simulated Flue Gas Testing
- Task 8: Preliminary Techno-economic Analysis

Year 1 Year 2 Year 3

The System

Hybrid Process Simulation

Heat duties (MW) for the absorption/stripping process (30/60^oC)

	Absorber	Stripper
top	-88.04	19.80
1st inter-stage	-52.56	77.42
2nd inter-stage	-43.48	51.35
3 rd inter-stage		33.00
total	-184.08	181.51

Energy Performance of the Hybrid Process

Power Item (in MWe)	Baseline Case 12	Hybrid Process
Compression	44.8	87.48
Steam Usage	139.19	0
Heat Pump Cycle	0	23.79
Membrane Unit	0	15.7
Others	20.6	20.6
total	204.6	147.57

Absorber Testing

CO₂ removal rate under 35 C 87.5% ٠ 85.0% CO₂ removal rate 82.5% 80.0% 77.5% 75.0% 120 140 160 180 100 200 G/L ratio (L/L)

Lean loading: 6.4 wt%

Lean loading: 5.8 wt%

Stripper Testing

The Membrane

Plan of Attack for Mixed Matrix Membranes

- Use simple nanoparticle fillers
- Surface modify the particles to improve interactions with CO_{2} and the polymer
- Employ an advanced polymer with good compatibility and CO₂ transport properties
- Create a membrane in which diffusion phenomena are determined by interactions with the particle and polymer surface

Membrane Fabrication and Optimization

Modification

Membrane Film Fabrication

The Polymer

The Ideal Polymer?

Processability/ Mechanical Properties

Chemical and Environmental Stability

Gas Separation Performance

Selected Polymer

Crosslinking Approach

Fabrication and Testing

Knife Casting on Porous Support

Generation 0 Membrane (Neat Polymer)

Generation 1 Membrane (Mixed Matrix)

%wt. Loading of Nanoparticles	Characterization	Membrane Results	
		Permeability	Selectivity
30% Unmodified	Non-Homogenous	N/A	N/A
Particles	Films		
10% Modified	SEM, TGA, DSC,	659	41
Particles	Membrane Testing		
20% Modified	Membrane Testing	675-1025	20-33
Particles			
40% Modified	SEM, TGA, DSC,	1609	44
Particles	Membrane testing		
60% Modified	Membrane testing	250-400	25-30
Particles			

Design of Experiments Matrix

- Further optimization of membrane composition Design of Experiments
 - Surface modification of the nanoparticles
 - Concentration of nanoparticles
 - Degree of crosslinking
- 30 compositions examined.

Using statistical tools to optimize membrane composition

Next Steps

- Complete optimization of membranes.
- Test membranes in simulated flue gas.
- Fabricate membranes as sub-micron films.
- Complete preliminary economic analysis.

Acknowledgement

Liquid Ion Solutions, Carbon Capture Scientific and Penn State University gratefully acknowledge the support of the United States Department of Energy's National Energy Technology Laboratory under agreement DE-FE0026464, which is responsible for funding the work presented.

Questions?